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We investigate here what happens beyond the onset of motion of a droplet on a wall
by the action of an imposed shear flow, accounting for inertial effects and contact-
angle hysteresis. A diffuse-interface method is used for this purpose, which alleviates
the shear stress singularity at a moving contact line, resulting in an effective slip
length. Various flow regimes are investigated, including steadily moving drops, and
partial or entire droplet entrainment. In the regime of quasi-steadily moving drops, the
drop speed is found to be linear in the imposed shear rate, but to exhibit an apparent
discontinuity at the onset of motion. The results also include the relation between
a local maximum angle between the interface and the wall and the instantaneous
value of the contact-line speed. The critical conditions for the onset of entrainment
are determined for pinned as well as for moving drops. The corresponding critical
capillary numbers are found to be in a rather narrow range, even for quite substantial
values of a Reynolds number. The approach to breakup is then investigated in detail,
including the growth of a ligament on a drop, and the reduction of the radius of
a pinching neck. A model based on an energy argument is proposed to explain
the results for the rate of elongation of ligaments. The paper concludes with an
investigation of detachment of a hydrophobic droplet from the solid wall.

1. Introduction
In previous work it has been established that beyond a critical shear rate value,

or below a critical window of contact-angle hysteresis, a droplet cannot remain
at a fixed location on a wall when exposed to a shear flow. This fundamental
problem in fluid mechanics has been investigated with a variety of applications
in mind (with corresponding adaptations in the problem formulation), including
spray coating and enhanced oil recovery (Dimitrakopoulos & Higdon 1998), fuel
cells (Golpaygan & Ashgriz 2008), detergency (Chatterjee 2001), cell adhesion (see
Hodges & Jensen 2002), viscous gravity currents (e.g. Eames, Gilbertson & Landeryou
2005), and is an alternative to displacing droplets by chemical inhomogeneities of
the wall (Thiele & Knobloch 2006). A further motivation for the present work is
to investigate for what local shear rate values droplets are displaced from a pipe
wall by gas flow in oil/gas pipelines. Results for the corresponding critical value of
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Figure 1. Problem definition sketch. The drop shape shown is that for a drop moving at
approximately constant speed for Re = 18 and Ca = 0.17.

a capillary number Ca = μγ̇ a/σ for a given window of hysteresis (or vice versa) of
three-dimensional droplets have been presented by Dimitrakopoulos & Higdon (1998)
and Dimitrakopoulos (2007a) for creeping flow conditions. For moderate values of
a Reynolds number Re = ργ̇ a2/μ, the critical value of the corresponding Weber
number, We =ReCa was investigated by Ding & Spelt (2008). Here, ρ and μ are the
density and viscosity of the surrounding fluid, respectively, a is an effective drop radius,
γ̇ is the imposed shear rate and σ is the surface tension coefficient (see also figure 1). In
this paper, we investigate what happens beyond criticality using a numerical method.

As may be anticipated, unless the contact line remains pinned for all contact angle
values, a first regime found is one wherein drops reach a quasi-steady state, such
that they move eventually at constant speed, having been deformed substantially.
An example of such a drop shape is given in figure 1. Several issues are investigated
regarding this regime in this paper. The results will be used to confirm a conjecture by
Dussan V. (1987) regarding the shape of drops moving in this flow for relatively flat
drops. Secondly, we investigate the effect of initial conditions in this flow regime. Ding
& Spelt (2008) found that the conditions for the onset of motion of drops (shape and
critical Weber or capillary number) are affected by the initial shape of the drop. As
pointed out by Dimitrakopoulos & Higdon (1998), droplets can be produced either
by injecting liquid into the droplet, resulting in a spherical-cap droplet with a uniform
contact angle equal to the advancing contact angle, or by subsequently withdrawing
some liquid, which would yield a flatter droplet with the contact angle equal to the
receding contact angle. Our previous work confirmed that the two different ‘optimum’
shapes determined by Dimitrakopoulos & Higdon (1998) could be approached (with
some minor qualifications) by starting numerical simulations with these two different
initial conditions (Ding & Spelt 2008). This motivates us here to investigate if and how
the initial droplet shape affects a sliding droplet. Thirdly, we investigate to what extent
a Cox–Voinov-type relation Cox (1986) can be formulated between an apparent con-
tact angle and the instantaneous contact-line speed. Previous work (Spelt 2006) shows
that such a type of relation exists for the corresponding two-dimensional problem but
for a local maximum angle between the interface and the wall; and it is not known
at present whether this still holds true for the three-dimensional problem, and what
this relation is. On this point, the present work follows up on a previous experimental
study by Le Grand, Daerr & Limat (2005) for drops sliding down an inclined
plane.

A second regime is found to occur beyond a second critical value of Ca or We
(higher than that for the onset of motion), wherein small drops (or, possibly, virtually
the entire droplet) are entrained by the surrounding shear flow from the initial
droplet. The ability to predict the onset of entrainment is of practical importance in,
for instance, the development of models for the rate of entrainment and deposition in
annular and stratifying annular flows of oil/water/gas mixtures (see Pan & Hanratty
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2002). A practical issue here is to know under what circumstances part of the pipe is
not covered by a film (e.g. the top of a large-diameter horizontal pipe in stratified flow)
such that corrosion inhibitors in the liquid phase are no longer efficient, motivating
investigations into the fate of deposited drops in the presence of a shear flow. A first
insight into partial entrainment of drops from walls can be inferred from a study
by Kang, Zhang & Chen (2005) for pressure-driven flow in a duct, to which we
refer readers for elaborate time sequences of the drop shape and the flow. It remains
unclear to what extent the onset of motion coincides with the onset of entrainment
(the simulation method of Kang et al. 2005 did not allow for contact-angle hysteresis,
hence their drops would always move, and only limited information was provided on
the critical condition for the onset of entrainment). We therefore investigate this regime
in some detail in this paper, allowing for contact-angle hysteresis and a comparison
between the onset of motion and entrainment, also following earlier work by Schleizer
& Bonnecaze (1999) and Spelt (2006) for the corresponding two-dimensional flow.

Furthermore, the present problem provides an excellent opportunity to investigate
droplet pinch-off in the context of atomization, the advantage of the present system
being that interfacial waves do not have to be tracked over a large distance. At the
very final stages of the entrainment process, one would expect an approach towards
a universal pinch-off regime (see Lister & Stone 1998). Consideration of the full
numerical simulation data on such an approach in the dripping of drops from a
faucet (Notz & Basaran 2004) suggests that this transition in the present flow is likely
to be beyond the reach of the numerical discretization at our disposal, bearing in mind
that the entire large-scale flow in both fluids must be simulated in a reasonable period
of time. In any event, little appears to be known about the earlier stage, during which
ligaments are stretched by the oncoming shear flow (before the transition towards the
asymptotic regime), and numerical methods such as that used here are ideally suited
to investigate this process further. In particular, we determine here whether a model
proposed by Marmottant & Villermaux (2004a) (or an adapted version of that) can
be used to track the main stage of the ligament growth process with potential use
in the prediction of the volume of entrained drops. We present results for different
values of the grid spacing to investigate convergence of the results.

For these purposes, we use the numerical scheme of Ding, Spelt & Shu (2007), which
was further tested against simulations based on a level-set approach for spreading
drops by Ding & Spelt (2007a,b). In this scheme, a diffuse-interface method is used to
track the evolution of the fluid–fluid interface, which allows for a density and viscosity
contrast in fluids. The stress singularity at moving contact lines is resolved by the
wetting conditions at the solid wall, resulting in an effective slip length λ proportional
to the thickness of the diffuse-interface (Ding & Spelt 2007b). The limitation of this
investigation is (in addition to an attempt to resolve the final stages of a pinch-off
process discussed above) that small values of the effective slip length that would be
representative of experiments on, for instance, an O(mm) drop is beyond the reach
of such full numerical simulations. Nevertheless, the present numerical method and
related methods have been successfully applied in previous work to identify various
trends involving moving contact lines (Spelt 2006; Ding & Spelt 2007a, 2008). It is
possible to vary the effective slip length in the present simulations to some extent,
and we show in § 3.6 that the slip length could be reduced sufficiently here to change
a quasi-steady state regime wherein a drop moves eventually at a constant speed into
an entrainment event.

In summary, after presenting the numerical method in § 2, the quasi-steady regime
is investigated (§ 3.1), followed by the onset of entrainment of a pinned drop (§ 3.2)
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Parameter Definition

θA Advancing contact angle
θR Receding contact angle
θ0 Initial contact angle
θm Local maximum angle between the interface and the wall
R Length scale; R ≡ (1.5V/π)1/3 for a drop with a volume of V
λ Effective slip length
Re Reynolds number; Re = ργ̇R2/μ
Ca Capillary number; Ca = μγ̇R/σ
Cn Cahn number; Cn = ε/R

Pe Péclet number; Pe = γ̇ R2/(McΨc)
Cac Critical capillary number for onset of entrainment
Cacl Dimensionless instantaneous contact-line speed
Cacl,s Dimensionless contact-line speed at quasi-steady state
XT (t) x position of the downstream tip of the ligament at the time t
rmin Radius of pinching neck of a ligament
tR Time ligament rupture; tR ≡ t0 − t where t0 is the time of rupture

Table 1. Relevant parameters in problem description and results. Additional parameters are
indicated in figure 1.

and the approach to pinch-off (§§ 3.3–3.5). Entrainment and detachment of a moving
drop is investigated in § 3.6.

2. Problem statement and methodology
2.1. Problem statement

A sketch of the problem studied here is provided in figure 1 and the relevant
parameters are defined in Table 1. The two fluids involved are assumed to be
immiscible, incompressible and viscous, and to have a constant (non-zero) coefficient
of surface tension σ . The viscosity and density of the surrounding fluid is μ and ρ,
respectively, and the ratio of viscosity (density) of the droplet to the surrounding fluid
is denoted by λμ (λρ). The shear rate γ̇ = U/HT is maintained by moving the upper
boundary of the domain, located at z = HT , at a constant speed U . The equations of
motion are made dimensionless using 1/γ̇ and a specific droplet radius R = (1.5V/π)1/3

as the characteristic time and length scale, respectively, where V is the drop volume.
The resultant dimensionless numbers are Re( = ργ̇R2/μ) and Ca( = μγ̇R/σ ). Effects
of gravity are ignored here in order to limit the number of dimensionless parameters;
hence, a Bond number ρ(λρ − 1)gR2/σ is assumed to be small. The effect of gravity
studied for the onset of droplet motion in shear flow has been investigated for the
creeping-flow regime by Dimitrakopoulos (2007b). Two representative contact-angle
hysteresis windows are considered: θA = 90◦, θR =40◦ and θA = 90◦, θR = 70◦. The initial
shape of the droplet is taken to be a spherical cap, with a uniform contact angle
θ0 (θR � θ0 � θA). Five cases will subsequently be referred to are: Case A (θA =90◦,
θR = 40◦ and θ0 = 90◦); Case B (θA = 90◦, θR = 40◦ and θ0 = 40◦); Case C (θA =180◦,
θR = 0◦ and θ0 = 90◦); Case D (θA = 90◦, θR =70◦ and θ0 = 90◦); and Case E (θA =90◦,
θR = 70◦ and θ0 = 70◦), among which Case C corresponds to a pinned droplet. In
all calculations reported here, the symmetry of the problem in the (x,y) plane is
exploited by simulating half of the droplet. Simulations are normally carried out in a
domain of 16.8 × 2 × 2 on a mesh of 500 × 60 × 60, and a longer domain may be used
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depending on the case investigated. Initially, the droplet rests on the solid substrate
at x = 3, and is then suddenly subjected to the surrounding simple shear flow. The
boundary conditions are imposed as follows. At the inlet, ∂ux/∂x =0 and uy = uz = 0;
at the outlet boundary, ∂u/∂x = 0, where (ux, uy, uz) are the velocity components in
the (x, y, z) directions (see figure 1). At the symmetric cross-section, i.e. the (x,z) plane
at y =0, symmetry boundary conditions are used (with uy = 0), while at the other
side of boundary (normal to the y direction) ∂u/∂y = 0. No-slip boundary conditions
are enforced at the upper and lower boundaries. The initial velocity field outside the
droplet corresponds to the imposed shear flow, whereas inside the droplet it is set
to zero. We have conducted numerical experiments for the entrainment of a pinned
droplet at Re = 18 with zero initial velocity everywhere except at the impulsively
moving upper wall. Those computations show that the droplet takes an excessive
time for the occurrence of entrainment, whereas this change in the initial condition
for the velocity field does not affect the critical value for the onset of entrainment.

2.2. Diffuse-interface method and wetting conditions

We use a diffuse-interface model for incompressible immiscible fluid flows with large
density and viscosity ratios (Ding et al. 2007), with appropriate wetting conditions
at the solid boundary, which allows for a moving contact line (Jacqmin 2000; Ding
et al. 2007). The numerical method used here is essentially the same as that used in
our previous work on the onset of motion of drops on a wall (Ding & Spelt 2008).
In this method, a sharp interface between two fluids is replaced by an interfacial
region of finite thickness. The volume fraction of one of the fluids, denoted by C, is
used to describe the position of the interface (with 0 � C � 1). The thickness of the
diffuse interface is artificially determined by an interface parameter ε and ε � R is
required for accurate simulations. Taking both accuracy and efficiency into account,
we choose here ε = 0.5	x, resulting in a Cahn number Cn = ε/R = 0.0167, where 	x

is the mesh spacing. As a result, local density and viscosity, as well as the pressure
field, vary relatively smoothly across the interface. The governing equation for C is
the dimensionless Cahn–Hilliard equation

∂C

∂t
+ ∇· (uC) = (1/Pe)∇2Ψ, (2.1)

where Ψ ( = C−1
n φ′(C)−Cn∇2C) is the chemical potential, φ = C2(1−C)2/4 is the bulk

energy density, Pe = γ̇ R2/(McΨc) is the Péclet number, Mc and Ψc are the characteristic
values of mobility and chemical potential. In this study, we choose Pe = C−2

n in all
simulations. As in the previous work, the position of the interface is henceforth defined
by the contour C = 0.5. The velocity u is divergence-free, and is obtained from solving
the Navier–Stokes equations using a projection method (see Ding et al. 2007, where
extensive test results can be found). Following earlier work by Jacqmin (2000), we
investigated the effective slip length resulting from the presence of the finite interfacial
layer by comparing results for axisymmetric droplet spreading with those obtained
from a level-set method wherein a slip-length formulation was used (Ding & Spelt
2007a). The effective slip length λ (when using a no-slip condition for the velocity
field) is approximately twice the measure of the thickness of the diffuse-interface, i.e.
λ= 2ε. Contact-angle hysteresis is represented as described by Ding & Spelt (2008),
i.e. through prescription of an appropriate boundary condition for C at the solid
substrate (Ding & Spelt 2008). Essentially, at each time step, the local value of the
contact angle is determined. If this value is outside the hysteresis window, either the
advancing or the receding contact angle value is prescribed by setting the appropriate
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value of C at a layer of ghost cells below the solid wall; otherwise, the C values at the
corresponding ghost cells remain unchanged. This procedure extends the geometric
formulation that was proposed by Ding & Spelt (2007b) for cases without hysteresis,
at the part of contact line where either θA or θR needs to be enforced, i.e.

n ·∇ C = −tan(π/2 − θ)|∇C − (n ·∇ C)n|, (2.2)

where θ = θA or θ = θR depending on the instantaneous local contact angle. To ensure
that there is no penetration of diffusive fluxes, n ·∇ Ψ =0 is explicitly enforced at the
solid wall. In addition to wetting conditions implemented at the lower solid wall,
other boundary conditions for C are: C = 0 at x = 0, y = 2 and z = 2; ∂C/∂x = 0
at x = 16.8 and y =0. Details of general numerical tests with this code (including
convergence studies) can be found in Ding et al. (2007). Although mass conservation
(in the sense of a volume integral of C over the entire domain) with this method is of
machine accuracy, in the presence of contact lines, we try to avoid small overshoots
and undershoots arising from the implementation of the wetting conditions by strictly
restricting the upper and lower bounds of C values, such that C = 1 if C > 1 and
C = 0 if C < 0, which is found to slightly affect volume conservation. Tests show
that for instance in the rather complex flow shown in figure 14, the error in the
total volume of the droplet phase does not exceed 2.7 %. A detailed comparison
for the present problem setup with results obtained by Dimitrakopoulos & Higdon
(1998) (who used a boundary-element approach) can be found in Ding & Spelt
(2008). Finally, at appropriate points below, we include results obtained for different
grids.

3. Results
In this study, we mainly restrict our attention to the cases wherein the density and

viscosity of the droplet have the same values as the surrounding fluid, i.e. λμ = λρ =1.
The effects of viscosity and density contrast are considered at some points in §§ 3.4–
3.5. The effectively slip length in the simulations has a value of 0.03R unless stated
otherwise.

3.1. Sliding droplets

A typical three-dimensional view of a droplet sliding at almost constant velocity and
shape is shown in figure 1 for Re =18 and Ca = 0.17. Figure 2(a) is a visualization
of the corresponding contact line and the velocity vectors in the (x, y) plane close to
the solid wall (z = 0.0167). The shape of the contact line is seen to be similar to that
assumed in the analysis by Dussan V. (1987): two curved ends connected by parallel
sides. At the parallel sides the local velocity is tangential to the contact line (we have
checked that at the parallel sides the local contact angle value changes from θR to
θA). At the curved downstream (and to some degree the upstream) end, the velocity
is approximately normal to the contact line and approximately equal to the speed of
the droplet times the cosine between the x axis and the vector normal to the contact
line. (We note here that there is a small effect of the small height 	z/2 whereat the
vectors have been plotted at the upstream side, due to the relatively small value of
the contact angle there.) This has also been found experimentally by Rio et al. (2005)
for droplets sliding down at an inclined wall. The inference drawn by those authors
from this, that the contact angle therefore only depends on the local value of the
capillary number based on the contact-line speed, is investigated below.
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Figure 2. Velocity vectors and shear strain near the solid wall at Re = 18 and Ca = 0.17 for
Case A. The corresponding three-dimensional view is shown in figure 1. (a) Contact line and
velocity vectors at z = 0.0167. The vectors are all of equal length and indicate the direction of
the velocity only. (b) The distribution of shear strain (i.e. ∂ux/∂z). The shear strain has been
non-dimensionalized by the shear flow rate γ̇ .

The initial shape of a droplet is known to potentially have a significant effect on the
critical conditions for the onset of motion, i.e. the droplet would move continuously
beyond the criticality (see Dimitrakopoulos & Higdon 1998), as well as its temporary
contact-line motion at the early stage (see Ding & Spelt 2008). It is therefore of
interest to investigate whether and how the initial shape affects sliding droplets. For
this purpose, numerical simulations have been carried out for droplets of equal volume
but with different initial configurations (Cases A and B , D and E in the problem
definition section). A comparison is made in figure 3, where snapshots of moving
droplets for Cases A and B are shown as a function of time at Re = 18 and Ca = 0.252.
It is seen that the difference in the initial shape causes different droplet motion at an
early stage. For example, it is the upstream part of the contact line in Case A that
starts to move first, whereas it is the downstream part of the contact line in Case
B . However, once the droplets have completely departed from their initial position,
they evolve into a similar elongated shape shortly. A comparison of the droplet
shape between Cases A and B at this stage is shown in figure 4 (here, the drops
have been shifted such that their downstream ends coincide, to facilitate the
comparison). We can see that the contact lines and cross-sections of the two droplets
virtually overlap, even though at this point the droplets have not quite reached a
quasi-steady state, which in this case would require an excessive computational effort
to approach; results of the approach to steady state are discussed below. This shows
that the initial shape of a droplet may have little effect on the quasi-steady state
of a steadily moving droplet, unlike the onset of motion. This has been verified by
further tests on Cases A and B and D and E at representative Reynolds and capillary
numbers. Figure 5 gives a quantitative presentation of geometrical change of the
droplet as a function of time, in terms of length, width and height. In all three cases
(Cases A and B at Re = 3 and Ca = 0.3, Cases D and E at Re = 3 and Ca = 0.3
and Cases D and E at Re =18 and Ca =0.2), the geometrical parameters appear to
converge, although the convergence of the length is much slower than that of the
width and the height.

In previous work, a force balance of droplets has been shown to be successful
in explaining the critical value of We for the onset of motion (see Ding & Spelt
2008), and we revisit this balance here to see whether this can be used to develop a
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Figure 3. Snapshots of the droplet at successive times of a regular interval at Re =18 and
Ca = 0.252 for Cases A and B . Contact lines are shown in (a) and (b), while cross-sections are
shown in (c) and (d ). In (a) and (c) the initial contact angle is θ0 = 40◦ and in (b) and (d ) it is
θ0 = 90◦.
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Figure 4. Comparison of droplet shape between θ0 = 40◦ (solid line) and 90◦ (dash-dotted
line) at Re = 18 and Ca = 0.252. (a) Contact line and (b) cross-section.

prediction of the drop speed at a quasi-steady state (denoted henceforth by Vs). At
the quasi-steady state, there is a balance between the force exerted by the surrounding
fluid on the moving drop, the wall stress exerted on the drop and an adhesive force
arising due to the intersection of the fluid/fluid interface by the wall. Hence we must
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Figure 5. Time evolution of moving drops on a solid substrate in terms of length (L), width
(W ) and height (H ). Initial configurations are: θ0 = θA (solid line) and θR (dashed line). (a)
Cases A and B at Re = 3 and Ca = 0.3; (b) Cases D and E at Re = 3 and Ca = 0.3; (c) Cases
D and E at Re =18 and Ca =0.2.

have, in dimensional form,∫
SI

n · T dS +

∫
SW

nW · T dS + σ

∮
CL

t dl = 0, (3.1)

where SI is the fluid/fluid interface, SW is the area of the wall wetted by the drop,
CL is the contact line; n and nW are the unit vectors (pointing away from the drop)
normal to the drop surface and the wall, respectively; T is the stress tensor; and the
vector t is a unit vector tangent to the interface, in the plane spanned by the vectors
normal to the wall and the contact line, and is pointing into the wall. At quasi-steady
state only the x-component of this balance needs to be considered, and we briefly
discuss scaling of this component of the three terms in (3.1). Following the arguments
by Ding & Spelt (2008), we tentatively write the force exerted by the surrounding fluid
on the drop as αvμγ̇R2 + αiρR2(γ̇ R − Vs)

2, where αv,i are unknown factors that will
depend on the geometry of the drop and, in principle, all dimensionless parameters in
the problem (this force has been determined analytically for a hemispherical droplet
in Stokes flow by Sugiyama & Sbragaglia 2008). The wall stress can partially be
absorbed into this expression. However, there is a large additional contribution to the
wall stress arising from the motion of the contact line; this can be seen in figure 2(b),
consistent with Kang et al. (2005). We tentatively write this additional contribution
as αmμVsR, where αm is assumed to depend on the dimensionless effective slip length
λ/R. The final contribution in (3.1) arises from the intersection of the drop surface
with the wall, and can be written as σ

∮
CL

ex · nccosθ dl, where ex and nc are the
unit vectors in the x -direction and normal to the contact line in the (x, y) plane,
respectively. If the contact angle θ has a unique value along the contact line, the
integration can be simplified and yields σcosθ

∮
CL

dy. It is clear that it gives a zero
value for a closed contact line no matter if the contact line has fore/aft symmetry.
For a sliding drop with contact-angle hysteresis, the contact line has two curved ends
at which the contact angles are θR at the upstream and θA at the downstream, and
parallel sides along which contact angles change from θR to θA. In this case, the
integration yields σ lw(cosθR − cosθA), where lw is the arclength of the contact line. We
write this as αsσR(cosθR − cosθA), where αs = lw/R. Hence, a force balance over the
droplet yields

αmCacl,s = αvCa + αiWe(1 − Cacl,s/Ca)2 − αs(cosθR − cosθA), (3.2)
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Figure 6. Contact-line speed as a function of time at Re = 1.08 and Ca = 0.21 for Case A.
Filled triangles denote the downstream-end contact-line speed, while open squares denote the
upstream-end contact-line speed.

where Cacl,s = μVs/σ . Only a positive resulting value for Cacl,s is admissible; a
negative result means the droplet will eventually grind to a halt (the contact angle at
the curved ends will then be inside the hysteresis window and the last term in (3.2)
must be modified accordingly). Naturally, hysteresis results in the critical condition
for the onset of motion (obtained by setting Cacl,s = 0) of Ding & Spelt (2008).

For systems without hysteresis and inertial effects, we find Cacl,s = αvCa/αm. We
should expect αm to increase when the effective slip length is reduced, naturally leading
to a reduction in the drop speed. In that case, the drop speed is the result of the balance
between viscous drag exerted on the drop and the wall stress resulting from contact-
line motion. The results by Kang et al. (2005) for a droplet with zero contact-angle
hysteresis do show this linear regime. This linear regime has also been observed in our
simulations for sliding droplets with a moderate window of hysteresis, at low Reynolds
numbers in particular. Figure 6 presents a typical example of a moving droplet
approaching the quasi-steady state, at Re =1.08 and Ca = 0.21. The instantaneous
dimensionless contact-line speed Cacl =μUcl/σ =CaUcl/(γ̇ R), where the contact-line
speed Ucl was obtained by determining the contact-line position from C using linear
interpolation, and subsequently differentiating the position numerically with time. To
avoid oscillations arising from the linear interpolation in the determination of the
contact-line position, Ucl is only computed when the contact line has moved at least
a distance of 	x since the last Ucl computation. It can be seen in figure 6 that the
contact-line speeds at the upstream and downstream end converge asymptotically to
a constant value with time.

Figure 7(a) shows the contact-line speed at the quasi-steady state (i.e. Cacl,s) as a
function of Ca , approximately under creeping flow conditions for Case A (Re = 1.08).
Compared with the results for a case without hysteresis, Cacl,s does not start to
increase from zero when we increase the value of Ca from one just below criticality of
the onset of motion to one just above criticality of the onset of motion. It was shown
by Ding & Spelt (2008) that Ca = 0.126 is just below the critical value for the onset
of motion at Re = 1.08, whereas figure 7(a) suggests the droplet would approximately
have a speed of Cacl,s = 0.006 if it had been in motion. This jump in contact-line speed
may be due to changes in the shape of the contact line when comparing between
sliding and stationary droplets, especially regarding the arclength of the contact line.
We can see from figure 7(b) that at Ca = 0.126, i.e. just below the critical value of
onset of motion, the stationary droplet has two small lateral ‘wings’, which are not
seen for sliding droplets. These wings correspond to the part of the contact line that
the contact angle changes from θR to θA, whereas only parallel straight sides are
allowed for steadily moving contact lines (Dussan V. & Chow 1983). Moreover, they
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Figure 7. Sliding drops in a quasi-steady state at Re = 1.08 for Case A. (a) Dimensionless
contact-line speed as a function of Ca; (b) contact-line shapes, where the solid line represents
the results just below criticality for the onset of motion (i.e. Ca = 0.126 which is equivalent
to Ca = 0.1 in Ding & Spelt 2008), the dashed line represents the results at Ca = 0.15 and
dash-dotted line represents the results at Ca = 0.21.

may provide a small additional resistive force. It is reasonable to expect that this
jump in contact-line speed is more significant for Case B , because Case B requires a
larger value of Ca to achieve an onset of motion than Case A (see Dimitrakopoulos
& Higdon 1998 and Ding & Spelt 2008). In conclusion, the speed of steadily moving
droplets is still linear in Ca in the presence of contact-angle hysteresis, if the shear
rate is beyond the critical value for the onset of motion. Furthermore, we find that
the shape of droplets at quasi-steady state is rather different for, for instance, different
values of Ca , which would modify the unknown coefficients in (3.2).

For the corresponding two-dimensional problem, the contact-line speed has been
found in previous work (Spelt 2006) to be associated directly with the local maximum
angle that the interface makes with the wall, θm, and results for different values of
Ca and λ/R could be collapsed onto a single curve. For droplet spreading without
the external forcing of a shear flow, this maximum angle may be interpreted as an
apparent contact angle (see Ding & Spelt 2007a, and references therein). The present
numerical code has been used in our previous work to investigate inertial effects in the
relation between the maximum angle and the contact-line speed in droplet spreading
(Ding & Spelt 2007a). In this system, the contact-line motion is not solely due to
conventional spreading, but due to the imposed shear flow. Hence, Spelt (2006) found
the results for θm to deviate from a Cox–Voinov relation; also, the maximum angle
was observed not to occur in the immediate vicinity of the contact line. Nevertheless,
the results for θm for different values of Ca and slip length collapsed onto a single
curve.

With these considerations in mind, we investigate here the conditions near the
downstream and upstream ends of the contact line for an almost-steadily moving
drop in three-dimensions (the study by Spelt 2006 being for two-dimensional drops).
Figure 8 shows the angle between the tangent of the interface and the horizontal, as
a function of the distance to the downstream and upstream ends of the contact line.
At the downstream side of the drop, it can be seen that the angle initially increases
with the distance from the contact line and gradually reaches a maximum value θm
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Figure 8. Angle of the tangent to the interface intersecting the horizontal (measured in the
vertical plane containing the drop centreline) as a function of the distance to the contact line,
for Case A, Re = 18 and Ca = 0.252. The results for the interface at the downstream (open �)
are presented by the right and upper coordinates and denoted by the subscript ds, whereas
the results for the interface at the upstream (filled 	) are presented by the left and bottom
coordinates with the subscript us. Note that the angle distribution shown here corresponds to
the last snapshot in figure 3(d ).

( = 102◦ at s =0.17). The results near the upstream side of the contact line are similar
to those reported by Spelt (2006), in the sense that the angle decreases with the
distance and approaches zero away from the contact line for an elongated drop, and
that a maximum value in the slope occurs rather far away from the contact line on
the downstream side of the drop.

Figure 9 shows θm as a function of the local contact-line speed for various values
of Ca . In principle, a very fine grid would be needed to resolve the highly curved
interface in the vicinity of the contact line and the resultant small-scale fluid flow.
However, the present results for sliding droplets suggest that the relation between
this angle and the instantaneous velocity is universal, with qualifications. We can
see that for Ca = 0.17 and 0.30 the results are more or less on the same curve (as
are those that were obtained with a different grid when keeping the same interfacial
thickness), where θm increases with the instantaneous contact-line speed when the
droplet starts to move and then is accelerated. When the contact-line speed reaches its
peak value, it slows down and appears to approach a constant value (a quasi-steady
state). During the deceleration in the contact-line speed, we find that θm decreases
following the same curve. At Ca = 0.32, drop entrainment occurs at the top of the
droplet (drop entrainment is investigated in detail in subsequent sections), and θm

reaches 180 degrees at the same time. After pinch-off of a small droplet the part of
the original drop remaining on the solid wall still moves but θm has dropped sharply.
Remarkably, the relation between θm and contact-line speed follows the same curve
as before breakup.

The results are compared in figure 9 with the corresponding results for the two-
dimensional problem for different values of Ca and the slip length at a single
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Figure 9. θm as a function of dimensionless instantaneous contact-line speed Cacl for Case A
at Re = 18, where Cacl =μUA/σ = CaUA/(γ̇ R) and UA is the instantaneous contact-line speed
at the downstream end of the contact line. Results are shown for Ca = 0.17 (	), 0.30 (�) and
0.32 (O). Filled and open symbols correspond to results prior and after the contact-line speed
reaches a maximum value, respectively. The dashed line is drawn to guide the eye. Droplet
entrainment occurs at Ca =0.32. The solid line corresponds to (3.3) with λ/R = 0.018. Results
on a half mesh size but with the same thickness of the diffuse-interface (or the same effective
slip length) are shown for Ca = 0.30 (grey filled �).

intermediate value of Re, which could conveniently be fitted to (Spelt 2006)

(
θ3
m − θ3

A

)1/3 ≈ (0.12 + 5.2Cacl) ln(R/λ) (0.01 � Cacl � 0.1) (3.3)

(the effect of changing the Reynolds number is discussed in the next paragraph).
A deviation was observed by Spelt (2006) from (3.3) when droplet entrainment was
approached (we take this opportunity to correct (4.2) of Spelt 2006 accordingly; the
labels in figure 15 in that paper are correct). There is no physical basis for (3.3),
it merely serves as a curve fit to the data, including those for different values of
the slip length; other versions wherein for instance θm = θA as Cacl = − 0.029 are
equally possible. We conclude from figure 9 that the three-dimensional and two-
dimensional results correspond quite closely when setting λ/R =0.018 in (3.3) for
the present results. The dimensionless effective slip length in the present simulations
is approximately λ/R ≈ 0.03 (based on Ding & Spelt 2007a). Since the definition of
macroscopic length scale R for the three-dimensional system is different from that for
the two-dimensional system, a mere O(1) difference between the values of λ/R seems
reasonable.

These findings are robust at relatively large values of Re. Upon increasing Re, θm

is seen in figure 10, after first reaching very large values during an initial transient,
to approach the same curve as that for moderate Re, and the results are again close
to (3.3). But there is a substantial effect of the value of Re on these results when
approaching small Re. At small Re, the value of Cacl is seen in figure 10 to be much
larger whereas θm is still fairly small, i.e. there is a substantial departure from (3.3).
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Figure 10. θm as a function of dimensionless instantaneous contact-line speed for Case A
at Ca = 0.17. Results are shown for Re = 1.8 (O), 18 (	) and 180 (�). Filled and open
symbols correspond to results prior and after the contact-line speed reaches a maximum value,
respectively. The solid line corresponds to (3.3) with λ/R = 0.018.

Previous work on inertial effects in droplet spreading has shown such data only to
collapse at small values of Cacl (Ding & Spelt 2007a), suggesting that the effective
slip length would have to be reduced significantly for such a collapse of the data for
Re = 1.8 on those for larger values of Re.

3.2. Onset of entrainment for a pinned droplet

We start the study of the onset of entrainment with that for a droplet pinned on a
wall, Case C; the effect of sliding on entrainment is studied in a subsequent section.
Snapshots of the cross-section in the x–z symmetry plane for droplets at a value of
Ca just below and just above the critical condition for the onset of entrainment are
shown in figure 11 at Re = 1.8 and 180. At moderate Re, for the droplet at a value of
Ca just below criticality, the drop is initially very strongly deformed before reaching
its steady state, as shown by the successive snapshots in figure 11(c). At later times,
the elongation continues and gradually rotates towards the flow direction until surface
tension becomes larger than viscous forces and pulls back the ligament. The droplet
ends up with a ‘thumb’-like shape. When Ca is slightly larger than the critical value,
the resultant slender ligament becomes unstable and breaks up in a very short time,
when the radius of the ‘neck’ of the ligament becomes sufficiently small for capillary
forces to become significant. From figure 11(c) we conclude that the curvature in the
ligament neck was insufficient for this to happen in that case. Compared with the
corresponding two-dimensional problem (Spelt 2006), we find that three-dimensional
results for the onset of entrainment are significantly different. Below criticality, in
two-dimensional simulations, droplets are seen to be hardly deformed at moderate
Re compared with that at low Re, whereas the present three-dimensional results
signify the opposite. Also, in our three-dimensional numerical studies the size of the
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Figure 11. Successive snapshots for a pinned droplet (i.e. Case C) for Ca just below and
above the critical value of onset of entrainment at low and moderate Re. (a) Ca = 0.136 and
(b) Ca =0.15 at Re = 1.8; (c) Ca = 0.115 and (d ) Ca = 0.120 at Re = 180. The thick curves
represent the droplet shapes at the steady state in (a) and (c), whereas the snapshot after
pinch-off in (b) and (d ). The numbers in (c) indicate the time sequence of the snapshots.

entrained drop is seen to decrease when Re is increased and Ca is just above the
criticality of onset of entrainment.

Figure 12 shows the critical condition for the onset of entrainment of a pinned
droplet, in terms of the critical capillary number, Cac, as a function of Re. We can
see that Cac decreases only by a modest amount as Re is increased (considering
the substantial range of Re studied) and appears to approach a constant value at
moderate Re, before dropping off at larger Re. This is in sharp contrast to the results
from previous work (Spelt 2006) (as are the shapes at criticality, as discussed above),
where in a smaller range of values of Re, the critical Weber number Wec = ReCac

clearly approached a constant value at moderate values of Re. These results therefore
suggest that entrainment is generally determined by the combined effects of surface
tension and viscous forces. Although a significant inertial effect is seen in the droplet
deformation just below Cac at moderate Re, and the volume of entrained drops
beyond Cac as discussed above, but this does not appear to have a strong effect on
Cac at low and moderate values of Re.

Although the results discussed above are for a pinned contact line, they are relevant
for smaller windows of contact-angle hysteresis also. During the entire duration of all
simulations reported in this section, the contact angle values at the contact line (not θm)
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Figure 12. Critical capillary number of the onset of entrainment as a function of Reynolds
number for a pinned droplet (i.e. Case C; λμ = 1, λρ = 1). The upper bound of the error
bar represents the lowest Ca at which the entrainment occurs in the simulation, whereas the
lower bound represents the highest Ca at which no entrainment is observed (the solid squares
represent the average of these two bounds). A test case at Re = 181 showed no effect of
changing the grid spacing by a factor of 2 when keeping the CFL number constant.
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Figure 13. Snapshots of pinned droplets at time of breakup for Re = 71.6, λρ = 1 , λμ = 1,
Ca =0.126 (solid line) and Ca = 0.252 (dashed line).

were found to be between 29◦ and 155◦. This indicates that a window of 180◦ of
hysteresis is not necessary to achieve a pinned droplet.

Although a full parametric study is not attempted here, we can report that tests
have shown that the value of λμ may have a significant effect on the critical value
Cac. At Re =71.6, Cac = 0.076 for λμ = 5, which compares with Cac = 0.12 at λμ =1.
A decrease in Cac for onset of motion when increasing λμ was also observed in
the creeping-flow regime by Dimitrakopoulos & Higdon (1998); the creeping-flow
analysis by Sugiyama & Sbragaglia (2008) shows that the dimensionless force exerted
on the drop increases with increasing λμ. This is in sharp contrast with the critical
value of a capillary number for the breakup of a freely suspended drop by shear,
which is known to increase strongly with λμ for creeping flows and insensitive to λμ

at relatively large Re (e.g. Khismatullin et al. 2003). This difference is likely to be
affected by the restrictions posed by the adjacent wall on the rotational motion of
the drop (a circulating flow is set up inside the drop that plays an important role
for freely suspended drops) and suggests a comparison with results for a drop in an
extensional flow instead. The reduction in Cac upon an increase in λμ from unity to
5 is indeed consistent with previous results for that case (Rallison 1984).

3.3. Qualitative behaviour during entrainment events

In figure 13 the cross-sections of droplets at the time of breakup are shown for a
value of Ca close and well above the critical value for entrainment, at the same value
of Re. For Ca = 0.126 the ligament breaks up while still being very short and two
pinching necks are observed. At Ca = 0.252 (also at Ca = 0.19, not shown) a longer
ligament is observed and the necking and rupture takes place next to the mother
droplet. At Ca = 0.38 an onset of capillary instability is observed (not shown). We
have also tested the sensitivity of the behaviour shown in figure 13 to the viscosity
and density ratio values. The results for λρ =3 at Ca = 0.252 are almost identical to
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Figure 14. Snapshots of multiple breakups for a pinned droplet in shear flow at Re = 45.3
and Ca =0.194 using 	x = 0.0167. From (a) to (d) is the sequence of events. Shear flow goes
from right to left.

the dashed line in figure 13, whereas for λμ =3 the ligament was significantly longer
at the point of pinch-off (not shown). The results for the largest value of λμ simulated
( = 10) also show evidence of an onset of capillary instability, with the second neck
rupturing first, but all other cases simulated have led to end-pinching, as in the ‘rapid
extension’ regime observed by Marmottant & Villermaux (2004b) in the stretching of
liquid ligaments. Although just beyond the critical condition for entrainment (i.e. at a
relatively low value of Ca) only short ligaments are formed, a liquid ‘column’ (in the
sense of ‘rapid extension’ regime of Marmottant & Villermaux 2004b) is still formed
leading to end-pinching (see figure 16a). We have not observed a ‘slow extension’
regime (in the sense of Marmottant & Villermaux 2004b, in which a single rupture
event occurs halfway down the ligament) in the cases studied here.

The behaviour at sufficiently large values of Ca is further complicated in that
a second entrainment event may occur. An example of this behaviour is presented
in figure 14, for Re = 45.3 and Ca = 0.194 for a pinned droplet (this also shows
the breakup into multiple satellite droplets mentioned above; we have verified that
doubling the grid spacing results in a very similar sequence, the only difference being
that the two smallest satellite drops seen in figure 14c are then not resolved). Here,
the ‘mother’ droplet remaining behind on the wall after the first entrainment event
still has a relatively large volume (of an effective radius r = 0.79), resulting in a
new flow configuration, i.e. Ca = 0.154 and Re =28.6 which, as can be verified from
figure 12, is still beyond criticality. A similar sequence of events was observed for
a pinned droplet with Ca =0.252 and Re = 71.6, where after the first entrainment
the remaining droplet, with the new flow configuration Ca =0.20 and Re = 46.1,
underwent a second entrainment event. In principle, then, there is a critical condition
beyond which multiple entrainment events occur, and we may even speculate about
the existence of an entrainment ‘cascade’, at large values of Ca when more than two
stages might occur, as in the droplet cascade of Thoroddsen & Takehara (2000). Since
the simulation of many such stages (to allow for investigating whether the behaviour
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Figure 15. Ligament growth of a pinned droplet at Re =71.6, λρ = 1 and λμ = 1. (a) Results
of successively refined meshes at Ca =0.252 keeping the CFL number constant, in terms of
the x-position of the downstream tip of the ligament vs. time; (b) results for various Ca with
a grid spacing of 0.033, in terms of relative ligament length vs. time to rupture.

is self-similar) would require an excessive computational effort, this is beyond the
scope of this paper.

3.4. Ligament dynamics

Here, we investigate the rate of stretching of ligaments by the shear flow in terms of
the streamwise position of the downstream tip of the ligament, XT (t). Results from
various mesh spacings are shown in figure 15(a). The results appear to converge with
refined mesh spacing. As can be seen from figure 15, the tip velocity is usually more
or less constant, i.e. the ligament appears to be passively convected downstream (as
observed for freely suspended drops in shear flow; see Cristini et al. 2003), but some
acceleration is observed for relatively low values of Ca . The velocity of the tip was
found to be strongly dependent on the value of Ca , however (note the scaled time axis
used in figure 15b). Cristini et al. (2003) proposed that the length of freely suspended
drops in an extensional flow increases linearly with time made dimensionless with
the imposed shear rate, but this does not explain the sensitivity to the value of Ca
observed in the present results. The passively convected ligament was also observed
in a related problem, i.e. inviscid axisymmetric slender bubbles in an extensional
flow (Booty & Siegel 2005). A different model has been proposed previously by
Marmottant & Villermaux (2004a) for ligament growth on a gas-assisted jet. That
model is based on a force balance over the ligament; it is an ordinary differential
equation for the length of ligaments formed on a jet. In the model proposed by
Marmottant & Villermaux (2004a), the inertial force exerted by the surrounding fluid
is balanced by inertia of the ligament,

1

2
ρV0

d2L̂

dt̂2
∼ 1

2
ρCDS0U

2

where L̂ is the ligament length, V0 and S0 are the initial ligament volume and cross-
sectional surface area, respectively, CD is a drag coefficient of the ligament, and U is
the imposed velocity of the surrounding fluid.
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But this appears not to be applicable to the conditions of the simulations reported
here: the main force exerted by the surrounding fluid is a viscous contribution, and
the rate of stretching is approximately constant, i.e. d2XT /dt2 is rather small (we
found that the streamwise position of the pinching neck changed on a much smaller
scale in most cases, so the rate of change of a ligament length can be approximated
by that of the value of XT ). Instead, the results are consistent with an energy balance
wherein the force applied by the surrounding fluid is at least partly converted into
surface energy,

σ
d

dt̂
SI ∼

∫
SI

n · T · u dS. (3.4)

The right-hand side of (3.4) scales as T ∼ μγ̇ , u ∼ γ̇ R and S ∼ γ̇ RL̂, respectively; the
left-hand side scales as σR dL̂/ dt̂ . Hence, the inverse characteristic time scale for the
rate of stretching is

L̂−1 dL̂/ dt̂ ∼ μγ̇ 2R/σ = γ̇ Ca. (3.5)

To facilitate a comparison with the numerical results, we define the following
parameters: the dimensionless time to rupture tR ≡ t0 − t and relative ligament length
LR(tR) ≡ (L̂(t0) − L̂(t))/R ≈ XT (t0) − XT (t0 − tR), where t0 is the time when the rupture
of the ligament takes place and note t � t0; XT (t0) is the streamwise position of the
downstream tip of the ligament at the instance of rupture. With these definitions
we find from (3.5) that the time dependence of XT (t0) − XT (t0 − tR) is a function
of tRCa (evidently, assuming that the right-hand side of (3.5) is constant gives a
linear relation). We have therefore plotted in figure 15(b) XT (t0) − XT (t0 − tR) versus
tRCa. The results support the scaling argument. An inspection showed further that
the result for Ca =0.126 in figure 15(b) could be well represented by an exponential
as suggested above. The results corresponding to figure 15(b) for a relatively low
Reynolds number, Re = 15.9, were found to be very similar (not shown), with the
exception of the largest value of Ca = 0.378, where a capillary-type instability was
observed and pinching occurred first near the tip of the ligament. Tests show that the
viscosity and density ratios have some, but no strong effect (see also figure 18b).

3.5. Pinch-off

Detailed views of the region where pinch-off first occurs are shown in figure 16. It
can be seen in figure 16(a) that initially the ligament is the thinnest at a point (i.e.
x = XM (t)) that moves downstream, but that towards the final stages of the pinch-off
process XM (t) moves upstream, consistent with the end-pinching in, for instance,
droplet breakup in an extensional flow (e.g. Tjahjadi, Stone & Ottino 1992). Kang
et al. (2005) observed a weak local maximum in the tangential stress in the ‘neck’
region and argued that this would drive the breakup. An extensional flow is seen
to occur in figure 16(b), but the pressure distribution and associated flow inside the
drop and ligament strongly suggest that these are curvature-dominated (certainly at
this late stage of the pinch-off process).

Numerical simulations of pinch-off of a droplet dripping from a faucet (Notz &
Basaran 2004) and experiments on a stretched ligament (Marmottant & Villermaux
2004b) have shown that a transition to the well-studied viscous–capillary pinch-off
regime (see Eggers 1997; Lister & Stone 1998) occurs rather late in the process.
Qualitatively, the shape of the pinching neck in figure 16(a) may appear to be
approaching the results of Sierou & Lister (2003) for viscosity-matched fluids, but
the slope of the cones on both sides of the pinching neck is still below that for the
self-similar regime (e.g. the maximum slope of the large cone is approximately 1.5 in
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Figure 16. Zoomed view of the entrainment of a pinned droplet at λρ =1, λμ = 1, Re = 71.6
and Ca = 0.126, showing (a) the ligament evolution with time and (b) the flow field before
the rupture of the ligament in terms of pressure contour and velocity vectors, which are all of
equal length and indicate the direction of the velocity only.

the final snapshot in figure 16, as opposed to about 5 in Sierou & Lister 2003). We
would therefore expect a self-similar pinching regime to occur only just beyond the
final snapshot shown in figure 16. More information on this issue is presented below,
although the main aim here is to investigate the earlier behaviour of the entrainment
process, which is the time during which the volume of entrained drops is primarily
determined.

In figure 17(a) the minimum radius of the ligament rmin is plotted versus time to
rupture tR ≡ t0 − t on successively refined meshes, at Re = 71.6 and Ca = 0.252. The
results appear to converge upon grid refinement. The values obtained for t0 are 68.6,
65.3 and 61.6 when using 	x =0.0667, 0.333 and 0.0167, respectively, which appears
to converge approximately linearly with the grid spacing (especially since t0 is reduced
when the grid is refined, evidently suggesting a finite rupture time upon further grid
refinement). Different choices of the time step upon grid refinement (either keeping



Sliding, pinch-off and detachment of a droplet on a wall in shear flow 237

tR

r m
in

5 10 15 20 250

0.05

0.10

0.15

0.20

0.25

0.30
(a) (b)

tR/Ca
20 40 60 80 1000

0.1

0.2

0.3

Ca = 0.126

0.190

0.378

0.252

Figure 17. Radius of the pinching neck rmin vs. time to rupture for Case C at Re = 71.6,
λρ = 1 and λμ =1. (a) Convergence study for Ca =0.252: solid line, 	x = 0.0167; dashed line,
	x = 0.0333; dash-dotted line, 	x = 0.0667; (b) rmin vs. tR for the Ca values indicated, with
	x = 0.0333. Note that the numerical artefacts are expected to enter the pinch-off process
when rmin � 6ε = 3	x, which is represented by dots in (a) and by the dashed line in (b).

a CFL number constant, or, as in the figure, the time step constant) resulted in the
same trend.

In all cases, the results are similar in the sense that the minimum radius is
approximately linear in the time to rupture, tR ≡ t0 − t , and then sharply changes
with tR when the rupture time t0 is approached. The results for rmin were found
to be especially sensitive to the value of Ca . To some extent this dependency can
be captured, as has been done in figure 17(b), by making the time to rupture
dimensionless with Rμ/σ instead of the shear rate. This is what would be expected
from a viscous self-similar regime (Lister & Stone 1998), but the three-dimensional
motion and distortion of the ligament is too complex for a universal self-similar
regime to have been approached at this stage. Also, as summarized in § 3.3, the
approach to breakup is qualitatively very different even for the rather narrow range
of values of Ca (one would also expect yet a different scaling to apply very close to
pinch-off, from a self-similar regime; see Lister & Stone 1998). We have also obtained
results for different Ca at a lower Reynolds number value (Re = 15.9) and found the
trends to be similar (not shown).

Most of the slope transitions occur roughly at rmin = 6ε = 3	x, which represents
the thickness of the diffuse interface between C =0.1 and 0.9. In principle, it is
anticipated that the dynamics beyond that stage are affected by the finite thickness
of the interface. But the result for the finest grid in figure 17(a) shows a change
in slope before this point is reached, and we may speculate that a transition to an
asymptotic regime may be approached at this very late stage of the pinch-off process.
A close inspection of these results has shown that the change of behaviour of rmin

more or less coincides with the reversal of the motion of the position of the pinching
neck, more precisely, from moving downstream to moving upstream. Further grid
refinement proved impossible due to memory limitations. In any event, a monotonic
convergence has been achieved in terms of the rupture time t0. Furthermore, the
slopes of the curves in the linear regime in figure 17(a) are very close, regardless
of the difference in grid spacing. In this respect, very similar results were found for
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Figure 18. Effect of viscosity ratio on the minimum radius (a) and the x-position of the
downstream tip of the ligament vs. time. Re = 71.6, Ca =0.252, λρ = 1 and grid spacing
0.033. The significance of the dashed line section in (a) is explained in the text. In (b),
	XT = XT − 6.0167 and 	t = t − t(XT =6.0167).

different values of density ratios, e.g. λρ =3 and 10, only the slope for λρ = 10 being
somewhat lower.

The results are also sensitive to the value of the viscosity ratio; see figure 18(a).
Increasing λμ leads to a delay in the onset of the final pinch-off stages. During such
delays the ligament continues to be stretched, culminating in several pinching regions,
at λμ =10. In fact, at λμ = 10 two necks were formed and simultaneously developed
during the ligament stretching. The minimum ligament radius is initially at the first
site downstream from the mother droplet and then switches to the second site just
before pinch-off. Since our code tracks the instantaneous minimum radius of the
entire ligament, we distinguish these two different stages in figure 18 by using a
dashed and solid line segment, respectively.

3.6. Breakup or detachment of a sliding droplet

We investigate here the occurrence of pinch-off or detachment for a moving droplet.
From the study in the previous sections, both sliding and entrainment events are
expected to play important roles. These two trends may compete with each other:
on the one hand, the formation and growth of a ligament is a prerequisite for the
occurrence of pinch-off, as shown in § 3.2; on the other hand, the ligament formation
implies an increasing value of θm, and consequently leads to a faster contact-line speed
(see figure 9). This in turn would hinder further ligament growth because a reduction
in velocity at the drop height of the oncoming shear flow and the drop velocity may
expect to effectively reduce the shear stress on the droplet. The initial condition for
especially the velocity field may play an important role in this respect, and we stress
that the results in this section are for the same initial conditions as stated in § 2.1.

Figure 19 shows the critical condition for the onset of entrainment for a moving
droplet, in terms of Cac as a function of Re for Cases A and D, together with
the corresponding critical values for the onset of motion in Ding & Spelt (2008)
(in that work, a different length scale was used, the previous results shown here
for comparison have been rescaled accordingly). It is seen that for Case A, Cac at
the onset of entrainment is almost constant ( ≈ 0.32) for Re < 130, and decreases
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Figure 19. Critical conditions of the onset of entrainment for a sliding droplet in terms of
the critical capillary number as a function of Reynolds number. The upper bound of the error
bar represents the lowest Ca at which the entrainment occurs in the simulation, whereas the
lower bound represents the highest Ca at which no entrainment is observed.

when Re > 130, in which regime inertial effects are expected to become significant.
It is naturally seen that Cac for the onset of entrainment is generally larger than its
counterpart for the onset of motion (such that there is the clearly defined flow regime
of quasi-steadily moving drops investigated in § 3.1). In addition, from figure 19 we
can see that Case D generally requires a larger Ca than Case A for entrainment at
all Reynolds numbers. With the same θA but a smaller hysteresis window, the droplet
experiences less resistance forces arising from contact-angle hysteresis in Case D than
in Case A, and thus a faster contact-line speed is expected in Case D at the same Ca .
To compensate the decrease of shear stress exerted on the drop due to fast contact-line
motion, a larger Ca is then needed for the occurrence of drop entrainment. Also,
Cac of a moving droplet is larger than the value required for a pinned droplet (see
figure 12). When evaluating (3.2) at criticality, Cac increases linearly with Cacl when
ignoring inertial effects. This argument has been shown previously to partly explain
the differences between Cac for entrainment of pinned and moving drops for the
two-dimensional system (Spelt 2006). But, of course, it ignores any changes in the
shape of drops for different flow conditions and, indeed, the change in shape due
to the fixed window of contact-angle hysteresis. Because of numerical limitations,
the effective slip length in these simulations is too large for direct comparison with
experiment, so droplets move more easily in the numerical simulation than those in
experiment, and one might expect experimental critical capillary number values to lie
between those shown in figures 12 and 19.

Two typical three-dimensional views at criticality for pinch-off are shown in
figure 20, at low (Re =1.8 and Ca =0.32) and moderate (Re = 180 and Ca = 0.28)
Reynolds numbers, respectively. The velocity field at the cross-section for a droplet
just above the onset of entrainment at Re = 18 is shown in figure 21(a), which has
similar wake structures to the two-dimensional results obtained by Spelt (2006) at
Re =10. Below the onset of entrainment, the wake structure behind a steadily moving
droplet at Re = 211.5 appears to be similar to the one behind a stationary droplet
observed by Ding & Spelt (2008), as shown in figure 21(b).
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Figure 20. Three-dimensional view of the droplet at criticality for Case A. (a)Re = 1.8 and
Ca = 0.321, (b) Re = 180 and Ca = 0.28.

Droplet entrainment is a dynamic combination of a number of physical processes.
Apart from the shear flow rate, there are other factors, such as slip length and
the initial configuration, that may also affect the onset of entrainment for a moving
droplet. Figure 22 shows an indication of the effect of slip length by comparing results
for dimensionless slip length values of 0.03 and 0.045, at Re = 18 and Ca = 0.32. We
can see that drop entrainment happens for the case with a slip length of 0.03 but
is not observed for the larger slip length value. It has been shown by Ding & Spelt
(2008) that the effect of slip length on the sliding process seems to primarily affect the
dynamic behaviour of the droplet sliding. In other words, a small slip length tends to
result in a smaller transient contact-line speed than a large slip length. It is seen in
figure 22 that the upstream part of the contact line moves at a faster speed in the case
of λ/R = 0.045 than that in the case of λ/R = 0.03, effectively holding back the top
of the droplet and preventing the droplet from pinching-off. The initial configuration
may also influence the pinch-off process. We find that drop entrainment does not
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Figure 21. Velocity vectors at cross-sections for droplets of Case A, i.e. (x,z) plane at
y =0.0167, with λμ = λρ = 1. (a) Re = 18 and Ca = 0.32, (b) Re = 211.5 and Ca = 0.252. The
velocity vectors have been rescaled by subtracting the advancing speed of the droplet at the
downstream end.
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Figure 22. Effects of slip length on the drop entrainment of moving droplets with an initial
configuration of Case A. Successive snapshots of droplets in the cross-section at successive
times of a regular interval at Re = 18 and Ca = 0.32. Solid lines represent results with a slip
length of 0.03, while dashed lines represent results with a slip length of 0.045. Contact lines
(a) and cross-section (b).

occur in our numerical experiments for Case B whereas it did for Case A, for Re = 18,
Ca = 0.32 and a slip length of 0.03.

We conclude this section with an investigation into the entrainment of a
hydrophobic droplet, with a contact-angle hysteresis of θA =140◦ and θR = 90◦ and an
initial contact angle of 90◦. Figure 23 shows two typical regimes observed in the cases
investigated for the entrainment of a hydrophobic droplet: pinch-off and detachment.
It is expected that the detachment of a hydrophobic droplet is similar to the physical
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Figure 23. Snapshots of the droplet for the case θA = 140◦, θA = 90◦ and θ0 = 90◦, at Re = 18.
Solid lines represent the solutions at successive times of a regular interval (a) Ca =0.096 and
(b) Ca = 0.046. Dashed line represents the solutions at the onset of entrainment or detachment.

process in shear flow past a rigid sphere on a solid wall (Bagchi & Balachandar
2002). Viscous and inertial forces exerted on the surface of the droplet generate a
hydrodynamic torque, leading to the rotation of the droplet before the pinch-off. We
can also see that a larger portion of the droplet breaks off at the top as a result of
the increased window of contact-angle hysteresis. In our numerical simulations two
features are distinct from the entrainment of hydrophilic droplets, which we mostly
considered in this paper: it is much easier to generate entrainment/detachment for
hydrophobic droplets than hydrophilic regarding the magnitude of shear flow rate,
and the detachment regime is not observed for hydrophilic droplets.

4. Conclusions
A diffuse-interface method has been used to study the motion and continuous

deformation of a three-dimensional droplet on a solid surface in a suddenly
applied shear flow. Properties of continuously sliding drops have been investigated
in detail. Some results confirmed the relevance of findings for the corresponding
two-dimensional problem (Spelt 2006), such as the relation between θm and the
instantaneous contact-line speed; on the other hand, the present results show a
smaller role of inertial effects in the critical condition for the onset of entrainment,
both for pinned and moving drops.

Some effort was put in the model development of the entrainment process. It
was found that the length of a ligament increases more or less linear with time on
a time scale σ/(μγ̇ 2R), which could be explained using an energy argument. This
ligament growth is suddenly terminated when pinching occurs. Ligaments were found
to elongate to very substantial lengths when Ca or λμ was increased. It was found
that the radius of a pinching neck changes approximately on a time scale Rμ/σ ,
although many of such time units would be required for pinch-off to take place. A
further issue here is that the type of breakup changes rapidly with the value of Ca ,
with capillary breakup appearing to approach relatively close to the conditions for
entrainment.

Because of the limitation of computational resources, the effective slip length in
our simulations is larger than that encountered in experimental conditions, by several
orders of magnitude. As shown in figure 22, the slip length affects the occurrence of
pinch-off for a sliding droplet. On the other hand, the effective slip length could be
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varied in the present paper to such an extent that it could determine whether or not
entrainment would occur. Also, a local maximum angle between the interface and
the wall was found to be primarily determined by the value of a capillary number
based on the instantaneous contact-line speed. The results obtained so far suggest
that contact-line motion of a droplet driven by shear is rather different from that of
conventional spreading. More work is required (e.g. using adaptive grid refinement
methods) to assess to what extent this remains the case for much smaller values of
an effective slip length.

The authors would like to acknowledge financial support from EPSRC under grant
numbers EP/D031222 and EP/E046029/1.
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